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ABSTRACT 
 

 Specialized devices are needed to meet the unique challenges of manufacturing, testing, 

and implementing rolled, core-free P(VDF-TrFE-CFE) actuators for Braille cell applications. 

Actuators are rolled to provide structural support, and designed without cores to simplify the final 

device. This thesis outlines the design, implementation, and experimental testing results of three 

mechatronic devices. First, a compact and easy-to-use machine was designed and built to assist 

with rolling thin films into cylindrical actuators. Second, in order to confirm that the Braille 

actuators met the .5 N force requirement of most refreshable Braille displays, a computer-

controlled force and strain testing device was designed that facilitated an investigation into the 

buckling characteristics of these actuators. An average buckling load of 1.84 N was found for a 

sample of 10 actuators, reasonably close to theoretical predictions of an Euler-Bernoulli buckling 

model. Last, a handheld, USB-powered Braille display was produced and experimentally tested 

that allowed a user to receive Braille characters from a computer. 
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Chapter 1  
 

Introduction 

There has been a growing interest recently in using electroactive polymer (EAP) 

actuators in refreshable Braille displays [1],[2]. Computer-controlled Braille displays allow the 

blind to interact with modern computer technology; however, conventional displays use bulky 

and expensive actuators which limit the number of characters that can be displayed at one time 

and the minimum device size. EAP actuators on the other hand are attractive because they can 

meet the requirements of Braille displays, specifically that the actuator should extend at least .5 

millimeters and produce at least .5 Newtons of force, while reducing overall device size and 

complexity. While the possibilities of these actuators are exciting, there are many challenges 

associated with their fabrication, reliability and implementation. 

Several groups have investigated the possibility of using alternative actuation techniques 

in tactile Braille displays. Choi et al. investigated using diaphragm-based actuators and created a 

compact, multi-character display [3]. Kato et al. used polymeric actuators to create a lightweight 

and flexible sheet display which allowed many characters to be placed in a small space [4]. 

Spinks et al. investigated using polypyrrole actuators to create small, multi-character displays [5]. 

P(VDF-TrFE-CFE) blend materials are attractive options for Braille cell actuation 

because the films have shown relatively high strain (>5%) at a modest field (1         and have 

a high Young’s modulus (>.3GPa) [6]. Previous investigations on actuator fabrication and testing 

concluded that rolled, core-free P(VDF-TrFE-CFE) actuators could meet Braille displacement 

requirements [7], [8]. An experimental single character Braille cell was also fabricated using 

these actuators. 

Although a complete description of the manufacturing process for these actuators can be 

found elsewhere [8], a summary will be provided here for completeness. Material films are 
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produced by a process of solution casting followed by stretching and annealing. Next, the films 

are attached to metal frames and electrodes are deposited. The single layer films are removed 

from the frames and laminated together. This bilayer film is then rolled up into a cylinder and 

trimmed to an appropriate length. Finally, steel balls are glued onto the ends of the cylinder with 

a conductive epoxy to create electrical connections. 

This thesis presents the designs and results of three mechatronic devices which were 

created to address the challenges of fabricating, testing and implementing P(VDF-TrFE-CFE) 

actuators. First, a rolling machine was developed to replace a semi-automated process used by 

previous investigators [7]. It was found that this relatively simple and inexpensive device can 

reliably and conveniently roll actuators. Second, prior investigations reported that some actuator 

samples failed during blocked force tests, but the mechanism responsible for these failures could 

not be reliably identified. To address this issue, an experimental setup was created to externally 

strain actuators and measure the resultant forces. This device was used to determine the 

assembled stiffness of individual actuators and to determine the critical buckling load of actuator 

samples. An Euler buckling model was developed with these data to predict actuator buckling 

loads. Finally, a compact, computer-controlled Braille display was created that received power 

and communication over a standard USB port. 
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Chapter 2 Actuator Rolling 

Rolling EAP actuators from a flat film into a cylinder presents unique challenges. Thin 

films (typically around 11 micrometers of bilayer thickness) are used to reduce the voltage 

required to meet the Braille display standard of .5 millimeters of displacement; however, these 

films lack the ability to support significant loads, such as the .5 Newtons of force required in 

refreshable Braille displays, and are rolled into cylinders to improve structural characteristics. 

There are several conditions that need to be maintained to produce an acceptable final actuator. 

First, the film needs to be kept in constant tension while it is rolled in order to ensure that the 

final actuator has tightly wound layers. Second, proper alignment must be maintained during the 

rolling process. Lastly, the film should be kept smooth, because wrinkles created during rolling 

will likely cause the finished actuator to fail. All of these factors make hand rolling very difficult, 

and motivate the development of a specialized device to assist with this process.  

Previously, a semi-automated machine was developed to roll these actuators [7]. In this 

setup, the user needed to align the film on a paddle, and the machine would handle the remainder 

of the rolling steps. Although this system was effective, there were a number of factors that 

motivated the development of a new solution. It was desirable to create a more flexible design so 

that s all changes in actuator di ensions didn’t require a  ajor equip ent redesign. Also, the 

text based interface used by the semi-automated machine led to a significant learning curve and 

operators found it difficult to use. Finally, the fully automated device was relatively large, and it 

was desirable to reduce the footprint size. 

A new rolling machine was designed with the intent of augmenting the skill of the 

operator, instead of attempting to replace the operator entirely. Actuator manufacturing needs to 

be done in a clean-room environment where space is typically scarce which dictated that the new 

machine be small, easy to move, and easy to store. User interactions with this machine were also 
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designed to be as intuitive as possible so that the operator can focus his or her attention on the 

rolling task.  

Design 

 A picture of the final device can be seen in figure 2-1. A sliding clamp holds the film in 

place while a suspended weight provides even tension on the film. A mass of roughly 4 grams 

was found to be sufficient; however, this mass can be easily changed if needed. The film is glued 

with a removable adhesive to a mandrel and a stepper motor rotates the mandrel. An Arduino 

microcontroller board provides control signals to the stepper motor driver. The mechanical parts 

of this machine were produced by water jet cutting or by fused deposition modeling rapid 

prototyping. 

 User interactions were eased by reducing the overall number of controls and by designing 

with the user-centered principles of affordances and natural mappings [9]. Affordances are 

aspects of a design that help tell a user what actions are possible, and natural mappings are 

created when the relationship between device inputs and outputs matches the intuition of a user. 

For example, the controls on this unit make their function obvious, and provide an effective 

affordance. Figure 2-2 shows the user controls implemented on this device. A natural mapping is 

used to make adjusting machine speed as intuitive as possible. Turning the knob to the right 

increases the  andrel’s rotating speed while turning the knob to the left decreases its speed. Even 

without instructions, a user could quickly understand how to operate this device. The film table 

on this device also provides the user with an affordance. The table can be tilted by hand to bring 

the actuator film in contact with the rolling mandrel. The table is moved by hand into contact with 

the actuator at the end of the rolling process to keep the film from unraveling. This allows the 

operator to manually adjust the force. 
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Figure 2-1: Photograph of the actuator rolling machine  

 

Figure 2-2: Actuator rolling machine controls (a) and demonstration of manual table positioning (b)               

Results 

Two different actuator lengths were used with this machine. One set of films were 75 millimeters 

in the direction of rolling and 45 millimeters wide. A second set of films were also 75 millimeters 

in the direction of rolling but were roughly 50 millimeters wide. A 1 millimeter diameter mandrel 
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was used for both actuator sizes. Figure 2-3 shows an example finished actuator made with the 45 

millimeter wide film. Once the ends of the cylindrical film were trimmed and steel electrodes 

were attached, the finished actuator was roughly 40 millimeters in length. 

  

Figure 2-3: Photograph of a finished actuator made with the actuator rolling machine 

 

Actuators made with this device were found to have a smaller diameter than those made 

with the semi-automated machine. A previous study reported an average actuator diameter of 2.3 

millimeters [7]. A set of 6 actuators made with this new device was found to have an average 

diameter of roughly 1.8 millimeters, an advantage in the Braille cell application. Members of the 

actuator fabrication team also preferred to use the new rolling machine, because it was more 

convenient and it allowed them to roll actuators in less time than was previously required. 

Typically, an actuator can be rolled in less than five minutes on this machine. Six actuators are 

required to form each Braille character in the final display. 
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Chapter 3 Mechanical Testing 

The long and slender shape of the rolled Braille cell actuators motivated an investigation 

into their buckling characteristics. The dimensions of these actuators were largely determined by 

the standard Braille requirements, specifically the requirement that the Braille pins must move at 

least 0.5 millimeters and adjacent pins within a character must be spaced 2.5 millimeters apart 

[10]. The overall length of these actuators was dictated by the displacement requirement because 

the displacement produced by these actuators is proportional to active length. The outer diameter 

is limited by the Braille pin spacing requirements and the practical manufacturing constraints on 

how closely holes in a final Braille cell could be placed.  Typical actuators are 40 millimeters in 

length and 1.8 millimeters in diameter.  

Previous investigations revealed that some samples underwent a sudden and significant 

reduction in force during blocked force testing; however, a definitive conclusion about the 

mechanism responsible for this failure could not be reached [7], [8]. While some actuators 

exhibited behavior that appeared to be buckling, other actuators were able to reach forces that 

were a factor of two or greater without buckling. Previous tests were also electrically actuated, 

which made it difficult to rule out an electrical explanation for these failures. To investigate the 

buckling properties of these actuators, a device was created that could apply an external 

displacement to a sample actuator and measure the resulting forces. The data produced by this 

machine was used to determine the maximum buckling load and the assembled actuator stiffness. 

These stiffness values were used with an Euler buckling model to predict actuator failure.  
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Design 

 

Figure 3-1: Photograph of the force and strain testing machine with part descriptions. Note that the top vice is 

held fixed during testing and the lower vice rises to compress the sample. 

 

Tradeoffs between accuracy and cost determined the final design of this machine. 

Researchers from material science, electrical engineering and mechanical engineering met before 

any design work was started, and determined that this device should be able to accurately produce 

and measure displacements of at least 1 millimeter with a precision of 20 micrometers or less. 

The device also needed to measure force to within .05 Newtons. Due to the small displacements 

required, a Firgelli PQ12-100-12-P linear actuator was selected, which had a precision of 100 

micrometers, and a mechanism was created to improve this precision to meet the testing 

requirements. These features can be seen in figure 3-1. By incorporating a sliding joint on the 

linear actuator mount and on the sample vice, a linear relationship was created between actuator 

displacement and clamp displacement. In this experiment, the sample clamp moved roughly 1/9
th
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the displacement of the linear actuator. Two springs were placed below the sample vice to 

eliminate mechanical backlash produced by the sliding joints. 

Mechanical parts for this device were created by using water jet machining, CNC laser 

cutting or fused deposition modeling. The height of the upper clamp could be adjusted using 

thumb screws on the back of the unit to accommodate different sample lengths. Also, the linear 

actuator could be repositioned horizontally to change the length of the lever arm between the 

linear actuator and the sample vice. This would allow for samples with greater displacement 

requirements to be tested in the future.  

Displacement was measured with the internal potentiometer on the Firgelli actuator. This 

potentiometer had a stroke of 20 millimeters and the analog to digital converter used to read this 

sensor had a resolution of 10 bits. This provided a resolution of roughly 20 micrometers at the 

linear actuator. The mechanical reduction of the lever mechanism improved this resolution to 

2.25 micrometers. 

Force was measured with a Transducer Techniques EBB-1 load cell. This sensor had a 

rated capacity of 9.81 Newtons, which was sufficient to measure typical forces produced by these 

EAP actuators. An instrumentation amplifier amplified the signal from the load cell into a useful 

range for data collection. A final resolution of .02 Newtons was obtained with a 10 bit analog to 

digital converter. 

 In order to simplify device operation and data collection, a graphical user interface was 

created with National Instru ents’ Lab IEW. The displace ent of the actuator vice could be 

controlled manually, or the device could be set to produce a ramp input at a user specified rate. 

Calibration settings could also be adjusted in the virtual instrument. Force and displacement 

results were presented to the operator in real time and could easily be exported for later analysis. 

Further details on the LabVIEW interface can be found in appendix A. 
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An Arduino Uno board was selected for linear actuator control and data acquisition. This 

board was relatively simple to interface with National Instruments’ LabVIEW software, and also 

helped to keep overall device cost to a minimum. Communication was handled over a standard 

USB port. LabVIEW sent strings of delimited data to the Arduino controller, which parsed the 

strings to obtain data. A sampling rate of approximately 10 hertz was used. For a more thorough 

explanation of the embedded software used in this device, see appendix B. All measurement and 

control functions were implemented on the Arduino board. A custom circuit board was fabricated 

to hold the motor driver and signal conditioning circuitry for the load cell. Additional information 

and circuit diagrams can be found in appendix C. 

Validation 

Before actuator testing could begin, it was necessary to ensure that the measurements 

provided by this device were accurate. Proof masses were used to validate the force transducer. A 

calibration was performed every time the device was used to ensure that accurate results were 

obtained. It was necessary to allow the force measurement system to warm up for roughly thirty 

minutes before accurate measurements could be made. To provide an estimate of the uncertainty 

associated with the force measurement, the device was left unloaded for 30 seconds and data were 

recorded. The results were found to be roughly normally distributed with a standard deviation of 

.019 Newtons, indicating that there was acceptably low noise.   

The platform positioning system also needed to be validated. This step was necessary to 

ensure that the positioning system was consistent, and that mechanical tolerances did not produce 

excessive measurement errors. Ten position step changes were commanded of the system, and the 

true displacement of the actuator vice was measured by a PolyTec OFV 534 laser vibrometer. The 

results of this test can be seen in figure 3-2. The average error was found to be -1.8 micrometers 
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with a standard deviation of 6.7 micrometers. The largest steady-state error recorded was 15 

micrometers. These measurements confirmed that the positioning system was sufficiently 

accurate. 

 

Figure 3-2: Force and strain testing machine positioning validation. The solid blue line is the commanded 

displacement, and the green line with crosses is the displacement measured with the laser vibrometer. (a) shows 

the displacement over a series of 10 steps and (b) shows an enlarged version of the region inside the dashed box. 

In order to ensure precise stiffness measurements were obtained, the compliance of the 

measurement system needed to be taken into account. Any compliance in the testing equipment 

would act as a spring in series with the actuator, causing the measured stiffness to be less than the 

actual stiffness. To determine the measurement device stiffness, a piece of aluminum was placed 

in the sample vice which was large enough to have negligible strain at the testing forces. A linear 

regression was performed on several experimental runs, and an average stiffness value of .033 

Newtons per micrometer was found. Since the sample was assumed to have no appreciable strain, 

this value was used as the device stiffness. A sample test result can be seen in figure 3-3. This 

stiffness is significant because it is roughly three times greater than the highest actuator stiffness, 

and would lead to significant errors if not accounted for. The actual sample stiffness is calculated 

from  

(a) (b) 
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   (1) 

 

where         is the sample stiffness,           is the measured stiffness found from the linear 

region of a force and strain plot, and         is the stiffness of the experimental measurement 

device. 

 

Figure 3-3: Force and strain testing machine stiffness measurement. The blue solid line shows the measured data 

and the green dashed line indicates the best linear fit. The slope of the linear fit is used as the device stiffness. 

 

 Sample stiffness measurements were validated using a spring with a known spring 

constant. This spring was placed between vices and was compressed and released for several 

cycles. The data from this test can be seen in figure 3-4. The spring constant reported by the 

manufacturer was .0032 Newtons per micrometer, and the stiffness found from these data after 

applying equation 1 was .0031 Newtons per micrometer. 
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Figure 3-4: Stiffness measurement validation using multiple compression and relaxation cycles of a spring with a 

known spring constant. The solid blue line shows the measured data and the green dashed line indicates the best 

linear fit. 

Lastly, it was desirable to evaluate the consistency of stiffness measurements over 

repeated tests. A sample actuator was cycled between 0 and 100 micrometers of displacement 10 

times and linear fits were determined for each cycle. A small displacement was used to ensure 

that buckling did not occur. Linear regression was performed on the results of this test, and a 

slope was calculated for each compression cycle. The standard deviation of these data was found 

to be .00025 Newtons per micrometer which is roughly 2 percent of the typical actuator stiffness. 

Experimental Methods 

Sample actuators were placed in a support fixture and allowed to rest on the top surface 

of the lower vice. This fixture supported the ends of the actuator and the middle, but left the 

remainder of the actuator open. The justification for this design is explained below in the section 
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on the Euler buckling model. The upper vice was manually lowered until contact was made with 

the actuator. The experimental setup can be seen in figure 3-5. LabVIEW was then used to raise 

the lower vice at a rate of roughly 55 micrometers per second until buckling was observed. Force 

and displacement data were logged for later analysis. 

 

Figure 3-5: Image (a) shows the experimental setup for buckling testing with important features 

labeled. Image (b) shows a CAD model of the experimental setup with the support structure rendered 

transparent and the test actuator shown in blue and green. The direction of movement of the lower vice is also 

indicated.               

Force and displacement data generated in this experiment provided two important pieces 

of information: the actuator’s stiffness in compression and the buckling load. Actuator stiffness 

was determined by performing a linear regression on the initial linear region of the data. Equation 

1 was then applied to account for the effect of measuring device stiffness. The highest force value 

recorded during the experiment was used as the buckling load. 
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Euler Buckling Model 

Euler buckling has been proposed as a model for the failure of these actuators in 

compression [7]; however, there are several assumptions that need to be verified before this 

assumption can be used. The most important question is whether the cross section can be treated 

as solid. As discussed in chapter 2, these actuators are rolled into a cylinder, and the ends of the 

cylinder are held together with an adhesive, but it was not known whether the layers would act as 

a solid cross section especially under a compressive load. Second, the stiffness of the assembled 

actuator needs to be known to apply Euler buckling. The film itself is known to have a Young’s 

modulus of roughly .3 GPa [6], but the final device has electrodes, glue, and steel balls, which 

made the assembled actuator stiffness unknown. Lastly, the manufacturing process for these 

actuators has a great deal of variability, and it was unclear how much affect this variability would 

have on buckling. 

One goal of this experiment was to determine what support conditions were needed to 

prevent actuators from buckling at loads below .5 Newtons, which is the desired level for 

refreshable Braille displays [5]. A previous study found that actuators supported in a continuous 

tube failed at an average load of 1.54 Newtons [8]. This load is significantly higher than the 

Braille requirement and it was thought that there could be benefits to using different support 

structures even if the critical buckling load was slightly reduced. For example, if the actuators 

were only supported at the ends and in the middle, substantial material could be removed from 

the Braille display, saving both weight and cost. In order to investigate whether this method 

would provide adequate support, all actuators were tested in the fixture shown in figure 3-5 

above.  

The effective length of the actuators needed to be determined before an Euler buckling 

analysis could be performed. Effective length is proportional to the original length of the sample; 



16 

 

 

however, it is scaled by different factors depending on boundary conditions and the mode of 

buckling failure. It was not possible to find an exact analytical match for the true boundary 

conditions represented in this experiment, because the actuators were not perfectly constrained by 

the support fixture. The holes around the actuators needed to be slightly larger so that the actuator 

could move freely. Also, the glued ends of the actuators were typically larger than the actuator 

itself, forcing the holes to be slightly oversized. These tolerances allow the actuators to move a 

small distance laterally during testing. By observing the buckling behavior of these actuators, it 

was determined that the ends could rotate in the fixture, and pinned end conditions were 

appropriate. 

The effective length of the actuator also depends on the buckling mode. The actuator 

supports were designed to force the actuators to fail in the second mode; however, the true 

buckling load was found to be substantially less. For this reason, predicted buckling loads are 

calculated for both the first mode and second mode using the Euler buckling model 

 

 

where   is the Young’s  odulus,           is the stiffness of the actuator,    is the initial length 

of the actuator minus the length of the steel electrodes,    is the outer diameter,    is the inner 

diameter,   is the cross sectional area, and      is the effective length [11]. The cross sectional 

area of the actuator is calculated by multiplying the bilayer thickness by the length of the unrolled 

film in the rolling direction. If the bilayer thickness was not known, an average value of 11 

micrometers was used in its place. The mandrel diameter of 1 millimeter was used as an 

approximate inner diameter. The overall length of the actuator was used as the effective length 

                                        
    

    
  

                   
    

  

         
    (2) 



17 

 

 

(    ) while 4 millimeters were subtracted off the length to find   . This was done to reduce the 

effect of the solid end electrodes on the theoretical buckling load. 

Experimental Results 

There was found to be a large amount of variability in the buckling load of the Braille 

cell actuators.  Table 3-1 shows testing results for all 10 sample actuators and it can be seen that 

the highest buckling load was roughly 3.9 times greater than the smallest. In order to further 

demonstrate the variability in buckling behavior, Figure 3-6a shows the test data for three sample 

actuators. It should be noted that not only did actuators fail at different loads, but each sample had 

different behavior around the critical load. For example, some actuators showed a drastic 

reduction in load immediately following buckling, while other samples had a more gradual 

leveling off of force. Figure 3-6b shows three buckling cycles for the same actuator, and 

demonstrates that, in general, actuator buckling is not reversible.  

  

Actuator 
Number 

Actuator 
Stiffness 

Actual 
Buckling 

Load 

Buckling 
load for 

first mode 

Buckling load 
for second 

mode 

Percent 
error for 

first mode 

Percent error 
for second 

mode 
  

  1 0.012 1.92 1.43 5.70 34.68 -66.33   

  2 0.011 1.62 1.09 4.36 48.65 -62.84   

  3 0.006 1.24 0.70 2.79 77.87 -55.53   

  4 0.015 2.54 1.54 6.17 64.73 -58.82   

  5 0.013 1.80 1.44 5.76 24.99 -68.75   

  6 0.008 0.80 0.84 3.36 -4.83 -76.21   

  7 0.012 1.60 1.57 6.27 2.00 -74.50   

  8 0.013 3.10 1.96 7.83 58.36 -60.41   

  9 0.014 2.70 1.78 7.12 51.60 -62.10   

  10 0.007 1.10 0.66 2.66 65.60 -58.60   

 

Table 3-1: Actuator buckling results and Euler buckling calculations 
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Figure 3-6: (a) Buckling results for three sample actuators. (b) Three experimental runs with the same 

actuator indicating the first run (blue solid line), the second run (green line with crosses) and the third run (red 

dot-dash line). 

 

The first buckling mode was typically found to underestimate the buckling load while the 

second buckling mode was always greater than the experimental value. Figure 3-7 shows a 

comparison of real buckling load for each actuator, and calculated buckling loads based on 

actuator stiffness with average values used for actuator diameter, film thickness and initial length. 

It can be seen that the first and second modes of actuator buckling provide a reasonably effective 

envelope for actuator buckling results. Linear regression was performed on the experimental 

buckling results and a best fit experimental effective length of roughly 81 percent of the original 

length. This indicates that constraining the middle of the actuators effectively increases the 

buckling load; however, the critical load is substantially less than the theoretical value predicted 

by the second buckling mode. 

(a) (b) 
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Figure 3-7: Actual and predicted buckling loads plotted against actuator stiffness. Experimental results 

(blue x), calculated load for first buckling mode (solid green line), calculated load for second buckling mode (red 

dashed line), and calculated load for best fit model (light blue dotted line) 

These buckling results also provide evidence for the behavior observed in previous 

studies [7], [8]. Data from blocked force testing revealed that the maximum force achieved before 

a substantial reduction in force occurred was approximately 1.56 Newtons, which is comparable 

to the 1.84 Newtons found in this study.  Additionally, it was previously found that these 

actuators could support .95 Newtons after buckling, which is relatively close to the average force 

of .91 Newtons found above. Previous testing was conducted with actuators supported in a 

continuous tube which was sized to fit closely with the actuators. The similarity of buckling 

results from these different tests provides further credibility to the theory that supporting the 

entire length of the actuator does not significantly increase the critical load. 

  



20 

 

 

Chapter 4 Handheld Braille Display 

Much of the research on implementing electroactive polymers in Braille displays has 

focused on using the reduced actuator volume to increase the number of characters that can be 

displayed on a similarly sized device. This study investigated how to implement a refreshable 

Braille display in a small device. While several sources present concepts for mobile devices with 

physical outputs for the blind, there are no prominent products on the market today that provide a 

single solution for mobile computing with a Braille display [12], [13]. Three primary objectives 

guided the design of this device. First, the overall size should be small compared to existing 

refreshable Braille devices. Second, the device should receive all of its power and communicate 

using a standard USB port. Lastly, the device should be easy to fabricate, assemble and repair. 

The motivation for developing a handheld Braille display was to provide the blind with 

an option for receiving small amounts of information from a mobile device without relying on 

text-to-speech interfaces. Future developments would likely call for three or four characters to 

improve the functionality of this device; however, even a few characters could present a variety 

of useful information if users could cycle through a word or phrase. For example, at a grocery 

store, a display could be used to print the names of scanned products, or it could also be used to 

scan bills, and print their value. It could also be used as a way to display the time, or as a way to 

output names in a contact list. It is likely that many other uses for this technology would be found 

once it was in production. 

Mechanical Design 

Decreasing the overall device volume was the largest challenge encountered during the 

design process. In order to reduce device size, the circuits needed to be designed concurrently 
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with the mechanical components. Figure 4-1 shows the completed handheld Braille display and, 

and also highlights some of the significant design features. The final assembly was 140 

millimeters long, 50 millimeters wide and 18 millimeters high. It was also lightweight with a final 

mass of less than 90 grams. 

 

Figure 4-1: Images illustrating the mechanical features of the Braille cell: (a) completed Braille cell,  

(b) close-up of Braille pins, (c) actuators shown in device, (d) USB computer connection. 

 

All of the major internal components were designed to slide together without permanent 

connections for quick assembly and disassembly. For example, the main PCB in this unit was 

held in place by slots in the side of the device and connected to the top of the device and the 

actuators through removable headers. A PCB was fabricated with surface mount pads that made 
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the connection to the lower end of the actuators. With the top cap removed, actuators could be 

quickly removed and installed. The main body of this unit and the lower cap were manufactured 

with fused deposition modeling, which allowed for quick design changes and would make 

production of additional prototypes more convenient. The top cap required greater precision, and 

was made by a selective laser sintering process. Safety was an important concern in the 

mechanical design, as high voltages are used in this device. To help prevent users from coming in 

contact with the high voltage supply, all high voltage connections from the main PCB are broken 

when the top cap is removed. In a final device, further precautions would need to be taken to 

prevent users from dangers such as electrocution from water entering the device.   

     Electrical Design 

Two main criteria drove the design of the actuator electrical connections: these 

connections must be temporary in order to facilitate easy actuator replacement, and one 

connection must maintain contact as the actuators extended and retracted. Also, the moving 

electrode needed to be compliant enough to not significantly restrict the motion of the actuator. A 

unique solution to this problem was found by using a material known as conductive fabric. This 

material (MedTex P-180) is made out of silver plated nylon, and was found to make a reliable 

electrical connection. This material is also relatively inexpensive with a 12 inch by 13 inch sheet 

costing approximately 20 dollars. Each character uses less than one square inch, so one sheet 

would provide enough material to make several displays. In order to ensure that the material was 

always in contact with the actuators, actuators initially protruded into the conductive fabric by a 

distance of 1 millimeter. This material was also effective, because it provided enough force to 

keep the actuators in contact with the lower electrode without significantly constraining actuator 

movement. Using the force and strain testing device described in chapter 3, it was found that 
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displacing the fabric in a test cell by 2 millimeters required roughly .1 Newtons of force. Figure 

4-2a shows the conductive fabric electrode in a test Braille cell. An issue that arises when using 

the conductive fabric is the tendency for one extending actuator to raise neighboring pins. To fix 

this problem, supports were placed in the top of the cell, which help keep the electrode flat. This 

feature can be seen in figure 4-2b. 

 

Figure 4-2: (a) Conductive fabric being tested in an experimental Braille cell. (b) Raised features are 

used to keep the conductive fabric under one pin from interacting with its neighbors.     

The electronics in this display needed to be able to supply high voltages to the actuators, 

and fit in the space available. An Emco A05P-5 amplifier was selected because it met the power 

requirements at a reasonably low cost. Printed circuit boards were created to reduce device size, 

increase reliability, and allow multiple prototypes to be quickly constructed. An Arduino 

microcontroller was selected to handle computer communication tasks and actuator activation. 

The main device circuit board can be seen in figure 4-3. 
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Figure 4-3: Main PCB of the handheld Braille display with part descriptions 

 

Charging and discharging the actuators was accomplished with the circuit shown in 

figure 4-4. These actuators have been observed to fail at higher currents, so a resistor was placed 

in series with the actuator to limit current. When the N-channel MOSFET transistor was activated 

by a 5 Volt signal from the microcontroller, the charging circuit was connected to ground and the 

actuator extended. A resistor was also needed in this circuit to discharge the actuator when the 

transistor was deactivated. The resistors and actuator capacitance formed a first-order filter which 

limits the charging and discharging time. Using typical values for actuator capacitance, it was 

found that the actuator will have a charging time constant of .5 seconds, and a discharging time 

constant of 1.25 seconds. While the charge and discharge times currently achievable with this 

device are slow for a Braille display, as these actuators develop further, response times could 

potentially be improved. Also, a second transistor could replace the parallel resistor in this circuit, 
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which would eliminate a majority of the steady-state current when an actuator is active, and 

would decrease discharging time. 

 

Figure 4-4: Actuator charging and discharging circuit schematic 

Embedded Software 

The microcontroller software was responsible for communicating with the user’s 

computer and actuating the appropriate pins to produce the desired Braille character. When a 

string of characters arrived over the USB cable, the software replaced the previous message in 

memory with the new message. By default, the first character of the new message was displayed. 

Every lowercase character had an associate byte in the program that indicated which pins needed 

to be actuated to produce a given character. The software used the value of each bit within a 

characters byte to either pull a digital output line to 5 Volts, or ground. The software also 

communicated the currently displayed character to the host computer. Additional information 

about the software used can be found in appendix D. 

User Interface and Digital Communication 

A user interface was created with software called Processing to send messages to the 

handheld display, and receive feedback about the operation of the device. This interface allows a 
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user to enter messages, which are sent over the USB cable to the handheld device. The user can 

then cycle through the message with the two buttons on the side of the device. As the user cycles 

through the message, the character displayed on the device and the computer screen will change 

simultaneously. Active Braille pins are indicated in the GUI so that proper device performance 

can be confirmed. A screenshot of the interface can be seen in Figure 4-5. 

 

Figure 4-5: Computer interface for handheld Braille display.  

Testing 

 

Correct operation of the PCBs was verified before computer control was attempted. With 

no actuators connected, each of the switching circuits was individually activated to ensure proper 

operation. Then each circuit was activated sequentially until all six circuits were active. Using an 

unregulated voltage supply presented a unique challenge in this design, because the output 
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voltage depends on the output current. At steady state, the resistor-capacitor charging circuit will 

draw very little current; however, the parallel resistor seen in figure 4-4 will always draw some 

current when the circuit is active. Figure 4-6 shows data for the output voltage and input current 

of this circuit. Future circuit designs could utilize a regulated power supply, or incorporate a 

switching circuit that eliminates the need for an additional resistor across the ends of the actuator. 

It was also confirmed that pulse width modulation (PWM) can be effectively used to reduce the 

voltage across the actuator, which will be discussed in greater detail below.  

 

Figure 4-6: Plot (a) shows that the output voltage decreases in response to activating additional 

charging circuits. Plot (b) shows the relationship between input current and the number of active charging 

circuits. 

Displacement tests were performed on the final device to confirm correct operation. A 

laser vibrometer was used to precisely measure the displacement of a pin. The experimental setup 

can be seen in figure 4-7. The test pin was switched on and off every ten seconds, and data were 

logged using LabVIEW. Displacements of up to .45 millimeters were found, which is slightly less 

than the Braille requirement of .5 millimeters; however, actuators with a 15 percent longer active 

area are being developed to address this issue, and it may be possible to use a higher voltage 

supply to enable greater displacements.  

(a) (b) 
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Figure 4-7: Braille pin displacement validation using a laser vibrometer. 

 Pulse width modulation (PWM) was investigated as a method to control actuator voltage. 

A sample actuator was tested at different PWM frequencies and duty cycles with no observed 

detrimental effects on the actuator. As expected, when the duty cycle is reduced, the final 

displacement is also reduced. Also, when the frequency of the PWM signal is reduced larger 

oscillations appear in the displacement. These effects can be seen in figure 4-8. While there was 

some concern that using PWM to control these actuators would cause them to fail sooner, a test 

actuator was repeatedly operated with PWM with no observed detrimental effects. Previous 

studies reported a cycle life for similar Braille actuators of roughly 1000 cycles [7], so future 

testing should confirm that PWM actuation does not negatively affect the life of these actuators. 
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Figure 4-8: Plot (a) shows actuator displacement for three different duty cycles at 50 Hz PWM 

frequency. The blue solid line is 25 percent duty, the green dashed line is 50 percent and the red dot-dashed line 

is 100 percent. Plot (b) shows the displacement profile of an actuator with a 50 percent duty cycle and 50 Hz 

switching frequency. Plot (c) shows the displacement profile of an actuator with a 50 percent duty cycle and a 10 

Hz switching frequency. It can be seen that increasing the switching frequency significantly reduces 

displacement fluctuations. 

 

 

 

(a) 

(b) (c) 

Inset (b)  
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The device was found to perform as expected. Messages could be entered into the user 

interface, and the correct circuits were activated for each character. Figure 4-9 shows the final 

unit displaying a Braille character. In order to account for variability in actuator length, short 

copper shims were created. These shims were ground to the correct length, and placed between 

the actuator and the conductive fabric. While this was found to work acceptably, this step would 

be unnecessary if future actuators can be made to tighter length tolerances. The device also 

proved to be reliable during testing. Tests were performed over the course of several months with 

no device failures.

 

Figure 4-9: Image (a) shows the Braille cell without any actuation voltage and (b) shows the cell displaying the 

letter “k”, which corresponds to pins 1 and 3 raised. 
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Chapter 5 Conclusions and Future Work 
 

Mechatronic solutions were developed for the fabrication, testing and implementation of 

rolled, core-free P(VDF-CFE-TrFE) actuators. It has been shown that a relatively simple machine 

can effectively and conveniently roll actuators. A tabletop force and strain testing station was 

successfully built and tested. Stiffness values obtained with this device were used with an Euler 

buckling model to predict actuator critical buckling loads. These actuators were found to have an 

average buckling force of 1.84 Newtons when supported at the end and in the middle, which 

greatly exceeds the Braille standard of .5 Newtons. Lastly, a novel handheld, computer-controlled 

Braille cell was developed and demonstrated. 

The most important feature of all these devices was their simplicity. These tools were 

designed to have their function be obvious so that the user could focus on the task they are 

performing. Also, all of these devices were primarily constructed through rapid prototyping 

methods, which would allow any future changes to be made quickly and easily. These devices 

were also designed to be flexible so that future requirement changes do not require a major 

redesign. Lastly, these devices were designed to be inexpensive. Approximate material costs for 

these devices were as follows: 100 dollars for the actuator rolling machine, 350 dollars for the 

force and strain testing machine, and 300 dollars for the handheld Braille display (excluding 

actuators). 

Future research could examine how to expand on the handheld Braille display concept. If 

3 or 4 cells could be incorporated in to one device, it would be more practical to provide users 

with small amounts of information quickly. While this prototype Braille display was controlled 

by a computer, methods of implementing this type of display into a cell phone or a smart phone 

could greatly benefit the blind community. 
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Appendix A: Force and Strain Testing Machine LabVIEW Interface 

The LabVIEW interface for the force and strain testing machine can be seen in figure A-

1. There are three main modes of control for this device: manual control, displacement control 

and force control. Each mode is activated by clicking the button below the appropriate label. If 

more than one button is activated, the manual control mode takes precedence. The plot labeled 

“Force” shows the force history of the system. Note that the time axis of this plot is in data points, 

not seconds. The plot labeled “Force and Displacement” shows the history of force and 

displacement readings. The button labeled “Clear Data” removes all of the prior recorded data. 

Data can be exported to Microsoft Excel or the system clipboard from LabVIEW. Measured 

displacement is shown in the box labeled “Displacement” while the commanded displacement is 

shown in the box labeled “Command”. The current force reading is shown in the box labeled  

“Force”. 

 

Figure A-1: Force and strain testing machine user interface. 
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In manual control mode, the slide labeled “Manual Control Command” controls the 

displacement of the lower vice. The numbers on the scale correspond to micrometers of 

displacement.  

In displacement control mode the user provides a starting position and a final position in 

micrometers. The user also provides a desired velocity in micrometers per second. Once the 

toggle switch for the displacement control is activated the lower vice will first move to the 

starting position then move towards the end position at approximately the rate specified by the 

velocity. Once the end position is reached, the vice will stop. 

In force control mode, the user provides a desired force and the machine will move the 

lower vice to attempt to maintain that force. The machine slowly moves the lower vice up if the 

force is lower than expected and down if the force is higher than expected.  
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Appendix B: Force and Strain Testing Machine Embedded Software 

The code listed here was loaded onto an Arduino Uno microcontroller board to handle all 

of the sensing and control tasks associated with the force and strain testing machine. The position 

of the linear actuator is controlled by a modified PID algorithm with a tolerance around the set 

point to prevent oscillations. Communication with LabVIEW is handled through serial strings. A 

string of characters is sent from LabVIEW and parsed in the Arduino code to exchange data and 

set all relevant machine parameters. 

 

/* 

Works with LabVIEW VI Strain_and_Force_Measurement_1_30_12 

VI originally implemented with LabVIEW 2010 

This code allows the Arduino to communicate with LabVIEW and control an experimental force 

and strain testing station. 

 

Supply voltage is tuned for 12V. Other voltage supplies may require different control gains 

 

Last edit: Michael Robinson 1/30/12 

*/ 

 

#include <TimedAction.h> //Used to control timing in displacement control mode 

#include <EEPROM.h> //Used to store calibration settings for force transducer 

 

TimedAction displacementUpdate = TimedAction(50,inc); 

 

//Motor control and feedback variables 

int commandPin=0; 

int feedbackPin=1; 

int strainGauge = 2; 

int m1PWM=9; 

int m1A=11; 

int m1B=10; 

 

int actuatorZero=800;//Linear actuator value for zero displacement 

 

float command=actuatorZero; //Linear actuator set point 

float feedback=0; //Current linear actuator position 

   

float pGain=2; 

float iGain=2; 

float dGain=-120; 
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float derivative=0; 

float integral=0; 

 

float pastFeedback=0; // Past position 

   

float omega=0; 

float diff=0;//error value = set point - current position 

int actuatorBias=50;//Duty cycle required to overcome actuator friction 

int tol=3;//Linear actuator will not move if current position is within tolerance of set point 

int tol2=10;//Linear actuator will move with reduced voltage below this tolerance 

int maxPower=100;//Variable used to store current maximum duty cycle 

int maxPower1=70;//Maximum duty cycle when current position is around set point 

int maxPower2=150;//Maximum duty cycle otherwise 

int posMax=900; 

int posMin=150; 

//for 9V power maxPower1=100, maxPower2=200, actuatorBias=80 

 

//Displacement Control Variables 

int displacementStart=700; 

int displacementEnd=500; 

int displacementRate=100; 

float umPerCount=2.25;//Micrometers of lower vice displacement per actuator potentiometer 

count 

 

//Force control variables 

float zero=380; 

float pastRef=380; 

float scale=30; 

float forceRef=1; 

float force=0; 

float pastADC=0; 

float forceSetPoint=0; 

float fControlGain=.1; 

float fControlTol=.05; 

float forceDifference=0; 

int forceMax=6; 

 

//Program control variables 

int forceControl=0; 

int manualControl=0; 

int displacementControl=0; 

 

//Serial Communication Variables 

char buffer[20]; 
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void setup() { 

  Serial.begin(9600); 

  pinMode(m1A,OUTPUT); 

  pinMode(m1B,OUTPUT); 

  scale=EEPROM.read(0); 

  zero=EEPROM.read(1)*4; 

} 

 

 

void loop() { 

    communicate(); 

    readForce(); 

 

    if(displacementControl) 

    { 

      displacementUpdate.check(); 

    } 

 

    Serial.print(force); 

    Serial.print(" "); 

    Serial.print(float(actuatorZero-feedback)*umPerCount);//Print Displacement 

    Serial.print(" "); 

    Serial.println(float(actuatorZero-command)*umPerCount); 

 

    for(int jj=0;jj<80;jj++) 

    { 

      control(); 

      if(forceControl) 

      { 

        fControl(); 

      } 

    } 

   

} 

 

 

//Reads the analog feedback from the actuator potentiometer  

//on the pin specified by the variable feedbackPin 

//Controls the position of the linear actuator using a rough equivalent of PI control 

//A bias voltage is applied to the actuator to overcome the initial effects of friction 

//A tolerance is used to prevent actuator oscillations 

void control() 

{ 

  feedback=analogRead(feedbackPin); 

  derivative=(pastFeedback-feedback)*dGain; 

  pastFeedback=feedback; 

  diff=command-feedback; 

  if(abs(diff)<tol2)maxPower=maxPower1; 

  else maxPower=maxPower2; 



39 

 

  

  //Pseudo integrator 

  if(derivative==0&&abs(diff)>tol) 

  { 

    integral++; 

  } 

  else integral=0; 

   

  //Control direction of motor 

  if(displacementControl&&diff<0) 

  { 

    digitalWrite(m1A,HIGH); 

    digitalWrite(m1B,LOW); 

    if(feedback>posMin)omega=abs(diff)*2*pGain+actuatorBias+derivative+integral*iGain+2; 

    else omega=0; 

  } 

  else if(diff<(-1*tol)) 

  { 

    digitalWrite(m1A,HIGH); 

    digitalWrite(m1B,LOW); 

    if(feedback>posMin)omega=abs(diff)*pGain+actuatorBias+derivative+integral*iGain+2; 

    else omega=0; 

} 

  else if(diff>tol)  

  { 

    //move actuator up 

    digitalWrite(m1A,LOW); 

    digitalWrite(m1B,HIGH); 

    if(feedback<posMax)omega=abs(diff)*pGain+actuatorBias-derivative+integral*iGain-50; 

    else omega=0; 

  } 

   

  else omega=0; 

  if(omega>maxPower&displacementControl==0) omega=maxPower; 

  if(omega>maxPower&displacementControl==1&diff>0) omega=maxPower; 

   

  analogWrite(m1PWM,omega); 

  delayMicroseconds(500); 

} 
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//Handles all communication with LabVIEW.  

//A string is passed over the serial line and different characters are used as delimiters 

//the function communicate parses this string to set variable values 

void communicate() 

{ 

  int length=20; 

   

  if(Serial.available()>0) 

  { 

    int ii=0; 

    for(int jj=0;jj<length;jj++) buffer[jj]=0; 

    while(Serial.available()>0&&ii<length) 

    { 

    buffer[ii]=Serial.read(); 

    switch(buffer[ii]) 

    { 

      case 'p': 

      command=atoi(buffer); 

      ii=0; 

      for(int jj=0;jj<length;jj++) buffer[jj]=0; 

      break; 

      //Displacement control variables 

      case 'd': 

      displacementStart=atoi(buffer); 

      displacementStart=actuatorZero-float(displacementStart)/umPerCount; 

      if(displacementControl==0)  

      { 

      displacementControl=1; 

      command=displacementStart; 

      } 

      ii=0; 

      for(int jj=0;jj<length;jj++) buffer[jj]=0; 

      break; 

       

      case 'e': 

      displacementEnd=atoi(buffer); 

      displacementEnd=actuatorZero-float(displacementEnd)/umPerCount; 

      ii=0; 

      for(int jj=0;jj<length;jj++) buffer[jj]=0; 

      break; 

       

      case 'm': 

      displacementControl=0; 

      forceControl=0; 

      manualControl=1; 

      ii=0; 

      for(int jj=0;jj<length;jj++) buffer[jj]=0; 

      break; 
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      case 'r': 

      displacementRate=atoi(buffer); 

      ii=0; 

      for(int jj=0;jj<length;jj++) buffer[jj]=0; 

      break; 

       

      case 's': 

      forceRef=atof(buffer); 

      scale=pastRef/forceRef; 

      ii=0; 

      for(int jj=0;jj<length;jj++) buffer[jj]=0; 

      break; 

       

      case 'z': 

      zero=pastADC; 

      ii=0; 

      for(int jj=0;jj<length;jj++) buffer[jj]=0; 

      break; 

       

      case 'f': 

      forceSetPoint=atof(buffer); 

      forceControl=1; 

      ii=0; 

      for(int jj=0;jj<length;jj++) buffer[jj]=0; 

      break; 

       

      case 'c': 

      EEPROM.write(0, scale); 

      EEPROM.write(1, zero/4); 

      ii=0; 

      for(int jj=0;jj<length;jj++) buffer[jj]=0; 

      break; 

       

      default: 

      ii++; 

      break; 

    } 

    delay(1); 

     

    } 

  } 

} 
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//Advances the platform when in displacement control mode 

//Note that displacement rates are approximate 

void inc() 

{ 

  float increment=0; 

  increment=float(displacementRate)/umPerCount*.1; 

  if(displacementEnd<displacementStart) 

  { 

  if(command>displacementEnd)command=command-increment; 

  else command=displacementEnd; 

  } 

   

  else 

  { 

  if(command<displacementEnd)command=command+increment; 

  else command=displacementEnd; 

  } 

} 

 

 

 

//Reads the analog voltage on the pin specified by the variable strainGauge. 

void readForce() 

{ 

  float adcValue=0; 

  int numAverage=10; 

  int numClear=30; 

   

  //Use the internal 1.1V reference to improve the accuracy of the strain gauge measurement 

  analogReference(INTERNAL); 

  //Take a few readings that won't be used to set the new reference voltage 

  for(int ii=0; ii<numClear; ii++) 

  { 

  adcValue = adcValue+analogRead(strainGauge);   

  } 

  adcValue=0; 

   

  //Read ADC value to be used in measurement 

  for(int ii=0; ii<numAverage; ii++) 

  { 

  adcValue = adcValue+analogRead(strainGauge);   

  } 

  adcValue=adcValue/numAverage; 

  pastRef=(zero-adcValue); 

  pastADC=adcValue; 

  force=(zero-adcValue)/scale; 

   

  //Reset the analog reference to 5V and take a few readings  

  analogReference(DEFAULT); 
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  for(int ii=0; ii<numClear; ii++) 

  { 

  adcValue = adcValue+analogRead(feedback);   

  } 

} 

 

 

 

//Force control function 

//Actuates lower vice to maintain a force supplied by LabVIEW 

void fControl() 

{ 

   

  forceDifference=forceSetPoint-force; 

  

if(abs(forceDifference)>fControlTol&&command<posMax&&command>posMin&&abs(force)<

forceMax) 

  { 

    command=command+fControlGain*forceDifference; 

  } 

}   
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Appendix C: Force and Strain Testing Machine Circuit 

 

Circuits were fabricated on an Arduino daughter board, which is also known as a shield. 

A complete circuit schematic can be seen in figure C-1. An SN754410 motor driver was used to 

supply inputs to the linear actuator. Direction and pulse width modulation (PWM) voltage 

commands were provided by digital output pins on the Arduino. The linear actuator feedback 

potentiometer was read into the Arduino analog input pin 1. Strain gauge conditioning and 

amplification were performed with an LM 324 op-amp and an AD623 instrumentation op-amp. A 

potentiometer was used to bias the AD623 output up to roughly .5 volts. This allowed both 

positive and negative strains to be measured. The Arduino ADC was set to have a range of 0 to 

1.1 Volts. A low-pass filter was also placed on the output of the AD623 to provide some signal 

smoothing.  

 

Figure C-1: Circuit schematics for force and strain testing machine 
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Appendix D: Handheld Braille Cell Embedded Software 

The following code was uploaded onto the Arduino microcontroller board to handle 

computer communication and actuator activation. Pin numbering follows the standard Braille 

convention seen in figure D-1. 

 

Figure D-1: Standard Braille pin numbering 

/* 

PSU handheld Braille display microcontroller code 

 

This code handles serial communication with a computer and  

switching the high voltage signals to the Braille actuators 

 

pin numbering follows Braille standard as seen below: 

  p1 p4 

  p2 p5 

  p3 p6 

   

Last edit: MDR 1/30/12 

*/ 

//Map between Braille pins and digital pins 

const int p1=5; 

const int p2=4; 

const int p3=3; 

const int p4=6; 

const int p5=7; 

const int p6=2; 

//////////////////////////////////////////////////////////////// 

 

//String message=" ";//Holds message sent from computer 

char currentCharacter='a';//Character currently shown on display 

int charIndex=0;//Location of character within message 

 

char buffer[20];//Buffer of characters to receive from computer 
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int length=20;//Length of buffer 

byte pinState = B000000; 

 

void setup() {                 

  // initialize the digital pin as an output. 

  Serial.begin(9600);  

   

  buffer[0]=' ';//Set initial character to a space 

   

  pinMode(2, OUTPUT);      

  pinMode(3, OUTPUT); 

  pinMode(4, OUTPUT); 

  pinMode(5, OUTPUT); 

  pinMode(6, OUTPUT); 

  pinMode(7, OUTPUT); 

   

  pinMode(8, INPUT); 

  pinMode(9, INPUT); 

   

  //Activate internal pull-up resistors 

  digitalWrite(8, HIGH); 

  digitalWrite(9, HIGH);  

   

  //Initially deactivate all actuators 

  digitalWrite(p1, LOW);  

  digitalWrite(p2, LOW); 

  digitalWrite(p3, LOW); 

  digitalWrite(p4, LOW); 

  digitalWrite(p5, LOW); 

  digitalWrite(p6, LOW); 

 

  //Wait for computer communication 

  while(Serial.available()==0) 

  { 

    delay(1); 

  } 

  } 

 

void loop() { 

  communicate(); 

  decode(); 

  setStates(); 

  readButtons(); 

  currentCharacter=buffer[charIndex]; 

  Serial.print(255,BYTE); 

  Serial.print(currentCharacter); 

  Serial.println(pinState,BYTE); 

} 

//Handle all communication with host computer 
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void communicate() 

{ 

   

  if(Serial.available()>0) 

  { 

    int ii=0; 

     

    for(int jj=0;jj<length;jj++) buffer[jj]=0;//Reset Character Buffer 

    charIndex=0; //Reset to display first character of message; 

    while(Serial.available()>0&&ii<length) 

    { 

    buffer[ii]=Serial.read(); 

    ii++; 

    delay(1); 

    }  

  } 

} 

//Convert between characters and pin states 

void decode() 

{ 

  switch(currentCharacter) 

    { 

      case 'a': 

      pinState=B10000000; 

      break; 

       

      case 'b': 

      pinState=B11000000; 

      break; 

       

      case 'c': 

      pinState=B10010000; 

      break; 

       

      case 'd': 

      pinState=B10011000; 

      break; 

       

      case 'e': 

      pinState=B10001000; 

      break; 

       

      case 'f': 

      pinState=B11010000; 

      break; 

       

      case 'g': 

      pinState=B11011000; 

      break; 
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      case 'h': 

      pinState=B11001000; 

      break; 

       

      case 'i': 

      pinState=B01010000; 

      break; 

       

      case 'j': 

      pinState=B01010000; 

      break; 

       

      case 'k': 

      pinState=B10100000; 

      break; 

       

      case 'l': 

      pinState=B11100000; 

      break; 

       

      case 'm': 

      pinState=B10110000; 

      break; 

       

      case 'n': 

      pinState=B10111000; 

      break; 

       

      case 'o': 

      pinState=B10101000; 

      break; 

       

      case 'p': 

      pinState=B11110000; 

      break; 

       

      case 'q': 

      pinState=B11111000; 

      break; 

       

      case 'r': 

      pinState=B11101000; 

      break; 

       

      case 's': 

      pinState=B01110000; 

      break; 

       



49 

 

      case 't': 

      pinState=B01111000; 

      break; 

       

      case 'u': 

      pinState=B10100100; 

      break; 

       

      case 'v': 

      pinState=B11100100; 

      break; 

       

      case 'w': 

      pinState=B01011100; 

      break; 

       

      case 'x': 

      pinState=B10110100; 

      break; 

       

      case 'y': 

      pinState=B10111100; 

      break; 

       

      case 'z': 

      pinState=B10101100; 

      break; 

       

      case '1': 

      pinState=B10000000; 

      break; 

       

      case '2': 

      pinState=B01000000; 

      break; 

       

      case '3': 

      pinState=B00100000; 

      break; 

       

      case '4': 

      pinState=B00010000; 

      break; 

       

      case '5': 

      pinState=B00001000; 

      break; 

       

      case '6': 
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      pinState=B00000100; 

      break; 

       

      default: 

      pinState=00000000; 

      break; 

       

    } 

} 

//Activate the appropriate transistors to form each character 

void setStates() 

{ 

  digitalWrite(p1,bitRead(pinState,7)); 

  digitalWrite(p2,bitRead(pinState,6)); 

  digitalWrite(p3,bitRead(pinState,5)); 

  digitalWrite(p4,bitRead(pinState,4)); 

  digitalWrite(p5,bitRead(pinState,3)); 

  digitalWrite(p6,bitRead(pinState,2)); 

} 

//Check the button states 

void readButtons() 

{ 

  for(int ii=0; ii<10; ii++) 

  { 

    if(digitalRead(9)==0) 

    { 

      charIndex++; 

      if(byte(buffer[charIndex])==0) 

      { 

        charIndex--; 

      } 

      while(digitalRead(9)==0) 

      { 

        delay(1); 

      } 

      delay(50); 

    } 

    if(digitalRead(8)==0) 

    { 

      if(charIndex>0) charIndex--; 

      while(digitalRead(8)==0) 

      { 

        delay(1); 

      } 

      delay(50); 

    } 

    delay(25); 

  } 

} 
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Appendix E: Handheld Braille Cell Circuit 

The circuitry that controlled the handheld Braille cell is relatively simple, and with the 

exception of the high voltage amplifier, consists of commonly available circuit parts. An Arduino 

microcontroller board was used to control this system; however, there are many other readily 

available microcontrollers that could perform this function. 

 

 

Figure E-1: Handheld Braille display circuit schematic 


